AUTHOREA
Log in Sign Up Browse Preprints
BROWSE LOG IN SIGN UP
Zi Li
Zi Li
Joined Jun 2021

Public Documents 2
Control of Chirality, Bond flexing and Anharmonicity in an Electric Field
Zi Li
Xing Nie

Zi Li

and 10 more

June 18, 2021
We located ‘hidden’ S-character chirality in formally achiral glycine using a vector-based interpretation of the total electronic charge density distribution. We induced the formation of stereoisomers in glycine by the application of an electric field. Control of chirality was indicated from the proportionate response to a non-structurally distorting electric field. The bond-flexing was determined to be a measure of bond strain, which could be a factor of three lower or higher, depending on the direction of the electric field, than in the absence of the electric field. The bond-anharmonicity was found to be approximately independent of the electric field. We also compared the formally achiral glycine with the chiral molecules alanine and lactic acid, quantifying the preferences for the S and R stereoisomers. The proportional response of the chiral discrimination to the magnitude and direction of the applied electric field indicated use of the chirality discrimination as a molecular similarity measure.
Defining the Bounds of Chemical Coupling Between Covalent and Hydrogen-bonds in Small...
Zi Li
Yong Yang

Zi Li

and 5 more

July 14, 2021
We seek to determine the two-way transfer of chemical character due to the coupling occurring between hydrogen-bonds and covalent-bonds known to account for the unusual strength of hydrogen-bonds in water. We have provided a vector-based quantification of the chemical character of uncoupled hydrogen-bonds and covalent-bonds and then determined the effects of two-way coupling consistent with the total local energy density H(rb) < 0 for hydrogen-bonds. We have calculated the precessions Kʹ of the eigenvectors around the bond-path for the Ehrenfest Force F(r) and compared with the corresponding QTAIM Kʹ. In doing so we explain why the Ehrenfest Force F(r) provides insights into the coupling between the hydrogen and covalent bonds whilst QTAIM cannot. Conditions for favorable transfer of electron momentum from the hydrogen atom of a sigma bond to the hydrogen-bond are found, with excellent agreement with the hydrogen-bond BCP and covalent-bond BCP separations providing the theoretical bounds for coupling.
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy