AUTHOREA
Log in Sign Up Browse Preprints
LOG IN SIGN UP
Hongbo Li
Hongbo Li
Joined Feb 2020

Public Documents 2
Computational Investigation and Screening of High-Energy-Density Materials: Based on...
Lian Zeng
Yuhe Jiang

Lian Zeng

and 4 more

March 19, 2021
Abstract: In the present work, the geometric structures, the frontier molecular orbitals and the enthalpy of formation (HOF) of thirty six 1, 2, 4, 5-tetrazine derivatives (FTT) were systematically studied by using the B3LYP/6-311+G* method of density functional theory. Meanwhile, we also predicted the stability, detonation properties and thermodynamic properties of all FTT compounds. Results showed that all compounds have superior enthalpy of formation far exceeding that of common explosives RDX and HMX, ranging from 859kJ·mol-1-1532kJ·mol-1. In addition, the detonation performance (Q = 1426cal·g-1 -1804cal·g-1; P = 29.54GPa - 41.84GPa; D = 8.02km·s-1 - 9.53km·s-1), which is superior to TATB and TNT. It is also concluded that the introduction of coordination oxygen on the tetrazine ring can improve the HOF, density and detonation performance of the title compound, and -NH-NH- bridge and -NHNO2 group are also the perfect combination to increase these values. In view of stability, because of the fascinating performance of D3 (ρ =1.89g·cm-3; D = 9.38km·s-1; P = 40.13GPa),E3(ρ = 1.87g·cm-3; D = 9.19km·s-1; P = 38.35GPa), F1 (ρ = 1.87g·cm-3; D = 9.42km·s-1; P = 40.23GPa) and F3 (ρ= 1.92g·cm-3; D = 9.53km·s-1; P = 41.84GPa), makes them very attractive to be chosen as HEDMs.
The Coplanar Family of Bis(nitrotriazoles) Tetrazine and Oxides Based as Energetic Co...
Jin Xu
Jinting Wu

Jin Xu

and 6 more

February 18, 2020
Abstract: Searching for energetic materials with balanced detonation performance and sensitivity is the enduring ambition in the evolution of high energy density materials (HEDMs). The coplanar molecular structure of energetic compound has a powerful impact on performance. Herein, the novel compounds of bis(nitrotriazoles) tetrazine (BNTT) was designed and investigated by density functional theory(DFT) method. However, the coplanar BNTT’s oxides would a highlight of molecular design with good balance between superior performance with acceptable sensitivities. Results show that all these designed compounds possess high densities, positive heats of formation, remarkable detonation performance, and acceptable impact sensitivity. In particular, B1-3 possess higher density (ρ=1.97g·cm-3) and exhibits the better balance between detonation performance (Q=1779.83 cal·g-1, D=9.48km·s-1, P=42.01GPa) and sensitivity (h50%=28cm) than RDX. The theoretical study offer that all novel compounds possess acceptable sensitivity. It may be seen as the potential candidates of HEDMs.
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy