loading page

Salinity-induced transcriptome profiles in marine and freshwater threespine stickleback after an abrupt six hour exposure
  • +1
  • Annette Taugbøl,
  • Monica H. Solbakken,
  • Kjetill S. Jakobsen,
  • Leif Asbjørn Vøllestad
Annette Taugbøl
Norwegian Institute for Nature Research

Corresponding Author:annette.taugbol@nina.no

Author Profile
Monica H. Solbakken
Universitetet i Oslo
Author Profile
Kjetill S. Jakobsen
University of Oslo
Author Profile
Leif Asbjørn Vøllestad
University of Oslo
Author Profile


Saltwater- and freshwater environments have opposing physiological challenges, yet, there are fish species that are able to enter both habitats during short time-spans, and as individuals they must therefore adjust quickly to osmoregulatory contrasts. In this study, we conducted an experiment to test for plastic responses to abrupt sainity changes in two poplulations of threespine stickleback, Gasterosteus aculeatus, representing two ecotypes (freshwater and ancestral saltwater). We exposed both ecotypes to abrupt native (control treatment) and non-native salinities (0 and 30‰) and sampled gill-tissue for transcriptomic analyses after six hours exposure. To investigate genomic responses to salinity, we analysed four different comparisons; one for each ecotype (in their control and exposure salinity; 1 and 2), one between ecotypes in their control salinity (3), and the fourth comparison included all transcripts identified in (3) that did not show any expressional changes within ecotype in either the control or the exposed salinity (4). Abrupt salinity transfer affected the expression of 10 and 1530 transcripts for the saltwater and freshwater ecotype, respectively, and 1314 were differentially expressed between the controls, including 502 that were not affected by salinity within ecotype (fixed expression). In total, these results indicate that factors other than genomic expressional plasticity are important for osmoregulation in stickleback, due to the need for opposite physiological pathways to survive the abrupt change in salinity.
12 Sep 2022Submitted to Ecology and Evolution
14 Sep 2022Assigned to Editor
14 Sep 2022Submission Checks Completed
20 Sep 2022Review(s) Completed, Editorial Evaluation Pending
20 Sep 2022Editorial Decision: Accept
Oct 2022Published in Ecology and Evolution volume 12 issue 10. 10.1002/ece3.9395